
Solutions of mid-sem exam, probability theory I,
B. math. I year, 2008-09, ISI-BC

Solution 1:
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Solution 2:
Probability that there is no 1 in n trials is, (p0 + p2)

n = (1− p1)n.
Probability that there is no 2 in n trials is, (p0 + p1)

n = (1− p2)n.
Therefore, probability that outcomes 1 and 2 both occur atleast once is,
1− (1− p1)n − (1− p2)n + pn0 . Because we were excluding the case 2 times where
only 0 appears in n trials.

Solution 3:
We will prove it by mathematical induction. Assume it holds for (n− 1) trials. In
the n th trial, it could be-
(i) Either, we have odd number of success, we will need the last trial to be a success
to have even number of success.
(ii) OR, we have even number of success, then we need the last trial to be failure.
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Solution 4:
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=
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=
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. [by replacing m = n+ 1]

Solution 5:
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∞∑
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Now, if X is a Poisson random variable with parameter λ, then E[X] = λ. And,
by the above formula,

E[X2] = λE[(X + 1)]

= λE[X] + λ

= λ2 + λ.

Similarly, by applying the above formula,

E[X3] = λE[(X + 1)2]

= λE[X2 + 2X + 1]

= λE[X2] + 2λE[X] + λ

= λ3 + λ2 + 2λ2 + λ

= λ3 + 3λ2 + λ.

Solution 6:
Let there are i (1 ≤ i ≤ n) elements in the choosen subset. So,

P (X = i) =

(
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)
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.

Therefore,
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V ar(X) = E[X2]− E2[X]

= E[X(X − 1) +X]− E2[X]

= E[X(X − 1)] + E[X]− E2[X].

Now,
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Therefore,

V ar(X) = E[X(X − 1)] + E[X]− E2[X]
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Solution 7:
(a) From the given conditions P{X = 2} = 1

2 ·
1
3 .
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2 ·
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3 ·

3
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i ·
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Therefore P{X > i} =
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1
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(b)

P{X <∞}c = lim
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Therefore P{X <∞} = 1.

(c)
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∞∑
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=∞.


