Solutions of mid-sem exam, probability theory I,
B. math. I year, 2008-09, ISI-BC

Solution 1:

P{ACB}:iP(ACB:|B\:k)~P(|B|:k)

Solution 2:
Probability that there is no 1 in n trials is, (po + p2)™ = (1 — p1)™.

Probability that there is no 2 in n trials is, (po + p1)"™ = (1 — p2)™.

Therefore, probability that outcomes 1 and 2 both occur atleast once is,
1—(1—=p1)"— (1 —p2)™ + pj. Because we were excluding the case 2 times where
only 0 appears in n trials.

Solution 3:
We will prove it by mathematical induction. Assume it holds for (n — 1) trials. In
the n th trial, it could be-
(i) Either, we have odd number of success, we will need the last trial to be a success
to have even number of success.
(ii) OR, we have even number of success, then we need the last trial to be failure.
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Solution 4:
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Now, if X is a Poisson random variable with parameter A, then F[X] = A. And,

by the above formula,
E[X?] = AE[(X +1)]
= AE[X]+ A
=X\ 4\
Similarly, by applying the above formula,
E[X?] = AE[(X +1)?]
= AE[X? +2X +1]
= A\E[X?] + 2)\E[X] + A
=N+ A2 4227 4+ )
=N 30+

Solution 6:
Let there are ¢ (1 <1 < n) elements in the choosen subset. So,

P(X =1) = %
Therefore,
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=0
n n—1
o1 ; (Z - 1>
n 271—1
on — 1
2oy
Var(X) = E[X?] — E*[X]
= E[X(X - 1)+ X] - E*[X]
= E[X(X —1)] + E[X] — E*[X].
Now,
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Therefore,

Var(X) = E[X(X — 1)] + E[X] — E*[X]
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Solution 7:
(a) From the given conditions P{X =2} =1 . 1.
Similarly P{X =i} = ;- 7%%1471 :ﬁ
Therefore P{X >i} =372 | k(lc+1) where ¢ > 1.
(b)

P{X < 00}® = lim P(X > 1)

1 1
ﬂwﬂo;{k i)
= lim -

1—00 1
= 0.

Therefore P{X < oo} = 1.

(c)




